Durée: 144 minutes

Algèbre linéaire Examen Partie commune Automne 2016

Enoncé

Pour les questions à choix multiple, on comptera :

- +3 points si la réponse est correcte,
 - 0 point si la question n'est pas répondue ou s'il y a plusieurs croix,
- −1 point si la réponse est incorrecte.

Les notations et la terminologie de cet énoncé sont celles utilisées dans les séries d'exercices et le cours d'Algèbre linéaire du semestre d'Automne 2016.

Notation

- Pour une matrice $A,\,a_{ij}$ désigne l'élément situé sur la ligne i et la colonne j de la matrice.
- Pour un vecteur x, x_i désigne la i-ème coordonnée de x.
- Id_m désigne la matrice identité de taille $m \times m$.
- $\; \mathbb{P}_n$ désigne l'espace vectoriel des polynômes réels de degré inférieur ou égal à n.
- Pour $x, y \in \mathbb{R}^n$, le produit scalaire canonique est défini par $\langle x, y \rangle = x^T y$.

Première partie, questions à choix multiple

Pour chaque question marquer la case correspondante à la réponse correcte sans faire de ratures. Il n'y a qu'une seule réponse correcte par question.

Question 1: Soit la matrice

$$A = \left(\begin{array}{rrr} 1 & 3 & 3 \\ 3 & 1 & 3 \\ 3 & 3 & 1 \end{array}\right).$$

Alors les valeurs propres de A sont

$$-2 \text{ et } 7$$

$$-5, -1 \text{ et } 1$$

$$-2 \text{ et } 3$$

Question 2 : Soit $T: \mathbb{R}^4 \to \mathbb{R}^2$ l'application linéaire définie par

$$T\left(\left(\begin{array}{c} x_1\\ x_2\\ x_3\\ x_4 \end{array}\right)\right) = \left(\begin{array}{c} 2x_1 - 3x_2\\ x_3 + x_1 + x_4 \end{array}\right).$$

Alors la matrice de T dans les bases

$$\left\{ \begin{pmatrix} 2\\0\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\2\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\2\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1\\2 \end{pmatrix} \right\} \text{ et } \left\{ \begin{pmatrix} 1\\2 \end{pmatrix}, \begin{pmatrix} 2\\1 \end{pmatrix} \right\}$$

est

$$\square \left(\begin{array}{cccc} 0 & 1 & 2/3 & 2/3 \\ 1 & -2 & -1/3 & -1/3 \end{array} \right)$$

$$\square \left(\begin{array}{cccc} 0 & 2 & 7/3 & 2 \\ 2 & -3 & -8/3 & -1 \end{array} \right)$$

$$\square \left(\begin{array}{cccc} 8 & -2 & 1 & 6 \\ 10 & -7 & -4 & 3 \end{array}\right)$$

$$\square \left(\begin{array}{cccc} 4 & -4 & -3 & 0 \\ 2 & 1 & 2 & 3 \end{array} \right)$$

Question 3: Soient les sous-ensembles de \mathbb{R}^2 suivants:

(a)
$$\left\{ \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \right\}$$

(d)
$$\left\{ \begin{pmatrix} 0 \\ a^2 \end{pmatrix} \text{ tels que } a \in \mathbb{R} \right\}$$

(b)
$$\left\{ \left(\begin{array}{c} a \\ \sin a \end{array} \right) \text{ tels que } a \in \mathbb{R} \right\}$$

(e)
$$\left\{ \begin{pmatrix} -a/2 \\ -10a \end{pmatrix} \text{ tels que } a \in \mathbb{R} \right\}$$

(c)
$$\left\{ \begin{pmatrix} 0 \\ a \end{pmatrix} \text{ tels que } a \in \mathbb{R} \right\}$$

Lesquels sont des sous-espaces vectoriels?

seulement	(c)	et	(e)
	(- /		\ ~

tous sauf (b)

tous sauf (d)

\square seulement (a), (c) et (seulement	(a),	(c)	et	(e)
-----------------------------------	--	-----------	------	-----	----	-----

Question 4 : Soient A et B deux matrices de taille $n \times n$ semblables.

Quel énoncé n'est pas nécessairement vrai?

		Les	pol	lynômes	caract	éristique	s de	A	et	de	B	sont	les	mêmes	S
- 1	-			·		1									

 \square Les rangs de A et de B sont les mêmes

$$\square$$
 A et B ont les mêmes sous-espaces propres

$$\square$$
 A est diagonalisable si et seulement si B est diagonalisable

Question 5 : Soient $m \ge 2$, A une matrice de taille $m \times (m-1)$ et $b \in \mathbb{R}^m$ un vecteur non nul. Alors l'ensemble des solutions de Ax = b peut être

 \square égal à \mathbb{R}^{m-1}

$$\square$$
 un sous-espace vectoriel de \mathbb{R}^{m-1} de dimension $m-2$

$$\hfill \square$$
 un sous-espace vectoriel de \mathbb{R}^{m-1} de dimension 1

Question 6: Soit

$$A = \left(\begin{array}{ccc} 0 & 0 & -3\\ 3 & 2 & 0\\ -1 & \frac{1}{3} & 1 \end{array}\right).$$

Si $B=A^{-1},$ alors l'élément b_{12} de B est égal à

Question 7 : Soient l'espace vectoriel \mathbb{R}^3 muni du produit scalaire canonique et le sous-espace vectoriel

$$V = \operatorname{Span}\left\{ \begin{pmatrix} 2\\0\\1 \end{pmatrix}, \begin{pmatrix} 1\\4\\3 \end{pmatrix} \right\}.$$

Alors, la projection orthogonale du vecteur $\begin{pmatrix} 6 \\ 21 \\ 3 \end{pmatrix}$ sur V est

- $\square \left(\begin{array}{c} 2\\16\\11 \end{array}\right)$
- $\left[\begin{array}{c}
 10 \\
 26 \\
 -5
 \end{array} \right]$
- $\square \begin{pmatrix} 4 \\ 8 \\ 7 \end{pmatrix}$

- $\hfill \Box$ ne peut pas être complétée en une base de \mathbb{P}_4
- n'est pas linéairement indépendante
- $\hfill \Box$ peut être complétée en une base de \mathbb{P}_4
- $\hfill \Box$ est une base de \mathbb{P}_4

Question 9 : Parmi les formules suivantes laquelle est toujours vraie pour tout choix de deux matrices inversibles A et B de taille $n \times n$?

Question 10 : Soit $T: \mathbb{P}_2 \to \mathbb{P}_3$ l'application linéaire définie par T(p(t)) = (t+1)p(t). Alors la matrice de T dans les bases $\{1, t, t^2\}$ de \mathbb{P}_2 et $\{1, t, t^2, t^3\}$ de \mathbb{P}_3 est

$$\square \begin{pmatrix}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{pmatrix}$$

$$\square \begin{pmatrix}
0 & 0 & 1 \\
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{pmatrix}$$

$$\square \begin{pmatrix}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{pmatrix}$$

$$\square \begin{pmatrix}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{pmatrix}$$

Question 11: Soient $A = \begin{pmatrix} 1 & 0 \\ 3 & 5 \\ 5 & 4 \end{pmatrix}$ et $b = \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix}$. Alors la solution au sens des

moindres carrés $\hat{x} = \begin{pmatrix} \hat{x}_1 \\ \hat{x}_2 \end{pmatrix}$ de l'équation Ax = b satisfait

$$\widehat{x}_2 = 1/6$$

$$\widehat{x}_2 = 41/6$$

$$\widehat{x}_2 = -5/6$$

Question 12 : Soit U une matrice de taille $n \times p$ dont les colonnes sont orthonormées et soit $W=\mathrm{Im}(U)$. Soit proj_W la projection orthogonale sur W. Alors, pour tout vecteur $x\in\mathbb{R}^p$ et tout vecteur $y \in \mathbb{R}^n$, on a

Question 13 : Pour quels nombres réels b est-il vrai que le déterminant de la matrice

$$\left(\begin{array}{ccc}
2b & 6 & 4 \\
0 & b-1 & 1 \\
-b & 2b-5 & 5
\end{array}\right)$$

est égal à 0?

$$-1 \text{ et } 1$$

$$\bigcirc$$
 0 et -1

Question 14: Soient a, b deux nombres réels tels que $a + b = 1$ et $A = \begin{pmatrix} 4a & 2 \\ 2 & 4b \end{pmatrix}$ une
matrice non inversible. Laquelle des affirmations suivantes doit être vraie?
Question 15 : Soit A une matrice de taille 4×5 telle que l'équation matricielle $Ax=0$ possède exactement deux variables libres. Quelle est la dimension du sous-espace vectoriel
$W = \left\{ b \in \mathbb{R}^4 \text{ tels que } Ax = b \text{ est compatible} \right\} ?$
□ 1□ 0□ 3□ 2
Question 16: Soit $ A = \overline{\begin{pmatrix} 2 & 4 & 4 \\ 1 & 3 & 1 \\ 1 & 5 & 6 \end{pmatrix}}. $
Si $A = LU$ est une factorisation LU de A (L est une matrice triangulaire inférieure dont les éléments diagonaux sont égaux à 1 et U est une matrice triangulaire supérieure), alors
Pélément ℓ_{32} de L est
Question 17: On considère l'espace vectoriel formé par les matrices de taille 3×3 de la forme $\begin{pmatrix} 0 & a & 0 \\ b & 0 & c \\ 0 & d & 0 \end{pmatrix}$ où $a,b,c,d\in\mathbb{R}$. Soit h un paramètre réel. Alors les matrices
$\left(\begin{array}{ccc} 0 & 1 & 0 \\ h & 0 & 1 \\ 0 & h & 0 \end{array}\right), \left(\begin{array}{ccc} 0 & h & 0 \\ 4 & 0 & h \\ 0 & 4 & 0 \end{array}\right), \left(\begin{array}{ccc} 0 & 1 & 0 \\ 2 & 0 & 3h \\ 0 & 4h & 0 \end{array}\right)$
sont linéairement indépendantes

Question 18: Soit <i>A</i> la matrice $\begin{pmatrix} -1/2 & 0 & -\sqrt{3}/2 \\ 0 & 1 & 0 \\ \sqrt{3}/2 & 0 & -1/2 \end{pmatrix}$. Parmi les affirmations (a) det $A = 1$ (b) $AA^T = \text{Id}_3$ (c) $A^3 = \text{Id}_3$
(a) $\det A = 1$ (b) $AA^T = \mathrm{Id}_3$ (c) $A^3 = \mathrm{Id}_3$
lesquelles sont vraies?
(a), (b) et (c) seulement (a) et (c) seulement (b) seulement (a) et (b)
Question 19 : La dimension du sous-espace vectoriel de \mathbb{R}^4 donné par
$V = \left\{ \begin{pmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{pmatrix} \in \operatorname{Span} \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ -1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 2 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 2 \\ 1 \end{pmatrix} \right\} \text{ tels que } v_4 = 0 \right\}$
est
 □ 4 □ 1 □ 2 □ 3
Question 20 : Soient A et B deux matrices diagonalisables de taille $n \times n$ telles que $A \neq B$. Alors
AB est diagonalisable si A et B ont les mêmes valeurs propres
AB n'est jamais diagonalisable
\square AB est diagonalisable si A et B ont les mêmes vecteurs propres
\square AB est toujours diagonalisable
Question 21 : Quel énoncé est vrai pour toute matrice A de taille $n \times n$ et tout vecteur $b \in \mathbb{R}^n$?
\Box L'équation $Ax = b$ a au plus une solution
\Box L'équation $Ax = b$ a au plus une solution au sens des moindres carrés
L'équation $Ax = b$ a au moins une solution
L'équation $Ax = b$ a au moins une solution au sens des moindres carrés

Question 22: Soient

$$A = \begin{pmatrix} 1 & 2 & 1 \\ -3 & -5 & -1 \\ -2 & -4 & -2 \end{pmatrix} \qquad \text{et} \qquad b = \begin{pmatrix} -2 \\ h^3 - h \\ h^3 - 4h + 4 \end{pmatrix}$$

où $h \in \mathbb{R}$ est un paramètre. Alors l'équation matricielle

$$Ax = b$$

possède une infinité de solutions

- pour h = -2, h = 1 et h = 2
- pour h = -2, h = 0 et h = 2
- pour h = -1, h = 0 et h = 1
- pour h = -1, h = -1/2 et h = 1/2

Question 23 : Soit un paramètre $b \in \mathbb{R}$. Alors le polynôme $q(t) = bt - t^2$ appartient au sous-espace vectoriel de \mathbb{P}_2 engendré par $p_1(t) = 1 + t + t^2$ et $p_2(t) = 2 - t + 3t^2$ lorsque

- b=1
- b = -1
- b = -3
- b=3

Question 24: Soient

$$A = \begin{pmatrix} -1 & -1 & -1 & 1 \\ 0 & 0 & 0 & 0 \\ 2 & 2 & 1 & -1 \\ -2 & -2 & -1 & 1 \end{pmatrix} \quad \text{et} \quad B = \begin{pmatrix} -1 & 1 & 0 & 1 \\ 0 & 0 & 1 & -2 \\ 2 & 3 & 2 & -2 \\ -2 & -2 & -1 & 1 \end{pmatrix}.$$

Alors

- $\operatorname{dim}(\operatorname{Ker} A) = 2 \text{ et } \operatorname{dim}(\operatorname{Ker} B) = 2$

- $|\operatorname{dim}(\operatorname{Ker} A) \neq 2 \text{ et } \operatorname{dim}(\operatorname{Ker} B) \neq 2$